Numerically find energy eigenvalues of a large symbolic matrix in Mathematica for a given range -
i have 136x136 hamiltonian (matrix) , need find eigenvalues.
it cannot solved analytically eigenvalues[h] required solve 136th order polynomial.
i need solve numerically replacing symbolic terms values before computing eigenvalues. however, needs plotted range of values of symbolic term example -1 < x < 1.
is there method numerically solve , plot range of values?
{ {10.1358 - 6.72029 x, 0., 0.},... {0., 10.1358 - 6.72029 x, 0.}, {0., 0., 10.1358 - 6.72029 x}, {0., 0., 0.}, {0., 0., 0.}, {0., 0., 0.}, {0., 0., 0.}, {0., 0., 0.}, {0., 0.204252, 0.}, {0., 0., 0.267429} ...
corner of matrix example. matrix real , symmetric.
Comments
Post a Comment